12 United States Patent

Moniz et al.

US010083187B2

(10) Patent No.: US 10,083,187 B2

(54) GENERATING GEOGRAPHIC BORDERS

(71)

(72)

(73)

(%)

(21)

(22)

(65)

(51)

(52)

(58)

(56)

Applicant:

Inventors:

Assignee:

Notice:

Appl. No.:

Filed:

International Business Machines
Corporation, Armonk, NY (US)

Michael J. Moniz, Bradiord (CA);
Robert Y. Nonez, Orleans (CA)

International Business Machines
Corporation, Armonk, NY (US)

Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 468 days.

14/838,833
Aug. 28, 2015

Prior Publication Data

US 2017/0060902 Al Mar. 2, 2017

Int. CIL.

GO6F 17/30 (2006.01)

U.S. CL

CPC .. GO6F 17/30241 (2013.01); GO6F 17/30991

(2013.01)

Field of Classification Search

None

See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

7,576,754 Bl
7,853,270 B2
7,937,402 B2

8/2009 Joseph et al.
12/2010 Ruise et al.
5/2011 Feng et al.

L oeainn

45) Date of Patent: Sep. 25, 2018
8,250,052 B2 8/2012 Barnett

2009/0132953 Al* 5/2009 Reed, Jr. GO6F 3/0481

715/781

2015/0169976 Al1l™ 6/2015 Ibrahim G0O6K 9/00476

345/629

FOREIGN PATENT DOCUMENTS

CN 105609144 2/2014

OTHER PUBLICATIONS

www.google.com/maps/, publication date unknown, printed on Aug.

26, 2015.

Nor Fuzaina Ismail, http://www.wseas.us/e-library/conferences/2013/
Malaysia/ ACACOS/ACACOS-26.pdf, publication date unknown,
printed on Aug. 26, 2015.

Blaylock, Nate, https://www.cs.rochester.edu/research/speech/pursuit/
quest09.pdf, publication date unknown, printed on Aug. 26, 2015.
http://www.Is.usda.gov/main/r4/landmanagement/gis, publication date
unknown, printed on Aug. 26, 2015.
http://www.disruptivegeo.com/2013/03/world-country-polygon-
datasets/, publication date unknown, printed on Aug. 26, 2015.
Blaylock, Nate, https://www.cs.rochester.edu/research/speech/pursuit/

Irec_spatial08.pdf, publication date unknown, printed on Aug. 26,
2015.

Lu, Yun, http://cake.fiu.edu/Publications/LLu+al-13-TG.TerraFly
GeoCloud_Online_Spatial. CIKM2013.camera-ready.pdf, publica-
tion date unknown, printed on Aug. 26, 2015.

* cited by examiner

Primary Examiner — Anh Tai Tran
(74) Attorney, Agent, or Firm — Nolan M. Lawrence

(57) ABSTRACT

Techniques are described for generating geographic borders.
In one example, techmiques include recogmizing a geo-
graphic location, determining a starting latitude and a start-
ing longitude and population for the geographic location,
and generating a border for the geographic location based on
the starting latitude, starting longitude, and population.

9 Claims, 6 Drawing Sheets

- 910

520

US 10,083,187 B2

Sheet 1 of 6

Sep. 25, 2018

U.S. Patent

oo o P o

AN

L Ol

Ll T

ol A
ot .r..v.xx_.”r.nv.:r.nxxg.xx!nnx o
o7 .Hu_.Hu__... 4

x:r..
A AN

T ER

|

P S Sl Sl el S

@\

o

I~

= .

) ¢ 9l

<.

— uoiyeindod pue ‘epnubuo| Buipels ‘epniiie| Builiels

Z 01724 aU} Uo paseq uonedo] oiydeiboab ay) Joy 1epiog e Bunelauab
A

&

=

% 0€2 uoneoo| aiydeaboob ay) Joj uoneindod BuiuiwiiB1Bp

=
A

o o

=

g

< 0cé ——— ‘opnuBuo| Buiiels pue spniiie| Buipels e Buiuiwisiep

” A

~

=

®

=

o OlLc uoeo0| o1ydesBoab e Buiziuboos.

)

-

US 10,083,187 B2

Sheet 3 of 6

Sep. 25, 2018

U.S. Patent

E LONG0Ed FYED0H ¥MAINEN00

bl

| 0%
ity

m L3407
006 01 AN)

- 0
“.
b

.
E3p

i .l

20 FINICEN

LES
..____F._T ¥ Ny el

FErIYRIUIINGOT

v
LN
OB EA

SOV MD T WY
RESERR e et A

%%
AT

95 3DYHOLS YiYQ

i wxghﬂwwﬁm —— b

U.S. Patent Sep. 25, 2018 Sheet 4 of 6 US 10,083,187 B2

420

-
<

FIG. 4

U
.S
. P
at
o { |
t
Se
p. 2
5
, 201
3
Sheet 5
of 6
U
S
10
,08
3
18
7
B2

510
520

Lovs
S IRTRLL

U.S. Patent Sep. 25, 2018 Sheet 6 of 6 US 10,083,187 B2

W

E
txxx:ex.

N

e e e
PP :':-_':- PR M M M
'I'

s ':-" e r‘:r!r!r!r!r “u :-"::-:' “
i P

o M M M M M W W

S

2w e e e S e e R
) i ¥)

;-

US 10,083,187 B2

1
GENERATING GEOGRAPHIC BORDERS

TECHNICAL FIELD

The 1mvention relates to geographical mapping software
and systems.

BACKGROUND

Geography 1s an area that 1s widely used today 1n natural
language. Data for borders/perimeters ol continents and
countries 1s available but not necessarily consistent as dii-
ferent countries disagree of territory. For provinces and
cities the data 1s scarce or non-existent. Population and

population density are generally available from cities to
continents which provides a consistent measure across land-
mass.

SUMMARY

In general, examples disclosed herein are directed to
techniques for generating geographic borders. In one
example, techniques include recognizing a geographic loca-
tion, determining a starting latitude and a starting longitude
and population for the geographic location, and generating
a border for the geographic location based on the starting
latitude, starting longitude, and population.

In other example, a computer system for generating
geographic borders includes one or more processors, one or
more computer-readable memories, and one or more com-
puter-readable, tangible storage devices. Program instruc-
tions are stored on at least one of the one or more storage
devices for execution by at least one of the one or more
processors via at least one of the one or more memories, to
recognize a geographic location, determine a starting lati-
tude and a starting longitude for the geographic location,
determine a population for the geographic location, and
generate a border for the geographic location based on the
starting latitude, starting longitude, and population.

In another example, a computer program product includes
a computer-readable storage medium has program code
embodied therewith. The program code 1s executable by a
computing device to recognize a geographic location, deter-
mine a starting latitude and a starting longitude for the
geographic location, determine a population for the geo-
graphic location and generate a border for the geographic
location based on the starting latitude, starting longitude,
and population.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 1s an 1illustration of equations for generating
geographic borders.

FIG. 2 1s a flow diagram 1llustrating a method for gener-
ating geographic borders.

FIG. 3 1s a block diagram of a computing device for
generating geographic borders.

FIG. 4 1s a block diagram illustrating mapping out a
perimeter.

FIG. 5 1s a block diagram 1illustrating outlining a compo-
nent.

FIG. 6 1s a block diagram illustrating calculating an outer
border.

DETAILED DESCRIPTION

Various examples are disclosed herein for generation of
geographic borders. In one aspect, a system 1s disclosed for

10

15

20

25

30

35

40

45

50

55

60

65

2

calculating a pseudo-border for a perimeter when the infor-
mation 1s unavailable or does not exist. By coupling a
starting latitude and longitude with population and popula-
tion density 1t 1s possible to approximate the shape of the
location. This gives the advantage of not just assuming a
border or a targeting a specific radius as a default, as
currently done 1n the prior art, including but not limited to
Google Maps. Google Maps handles searches 1n a very
specific way. For example, take the search: “Pizza near Me”
or “Pizza near Ottawa”. Google Maps applies a “1n’ restric-
tion not ‘near’ and thus will not return results for cities
surrounding Ottawa but will only get results in Ottawa.
For a given geographical region the most available data
know are sub-regions, population, population density and
latitude, longitude of all geographical components. The first
step 1s to determine a radius proportional to population and
population density of the region in question. Using the fact
that the population density was calculated based on known
area that gives a general understanding of the surface area.
Without additional information the shape can only be
assumed to be square or circular with the latitude, longitude

as the center. The area of a circle is known to be: A=nR=, as
illustrated by this first equation:

=

Population density 1s the number of people per Area, as
illustrated by this second equation:

, population
 populationdensiry

The combination of the first and second equations solves
for radius, as illustrated by equation 110 shown 1n FIG. 1,
where C 1s some constant to define the distance 1n Kilome-
ters. Note that this 1s forcing the shape of the region into a
circle which 1n general will not map to the actual border.

A second step 1s needed to reduce the error and improve
the shape. The next piece of information available 1s sub-
regions (1f the region 1s not the lowest in the hierarchy of
geographical regions). This step repeats step 1 but for all
sub-regions providing a perimeter of each sub region (gen-
crating several circles that may or may not intersect).

As shown 1n FIG. 4, Overlay the circles 410 generated
from Steps 1 and 2 to map out a perimeter with any
protruding elements generated from inner circles.

Step 3 15 to close the shape (border). It 1s possible 1n
extreme cases for the sub regions to be completely outside
the parent. One possible way to generate a completed border
1s to calculate a line tangent to each circle that exceeds the
parent range and from the parent itself to close the shape.
The above steps generate a completed border 420, as shown
in FIG. 4, to approximate a geographical region 120 as
shown 1 FIG. 1.

An additional aspect 1s how this can relate to natural
language restrictions such as in, near and outside. Assuming
the border 1s now calculated by steps 1 and 2, to outline the
next component this border 510 1s now displayed, as shown
in FIG. 5

The following scenarios are used to 1llustrate the types of
restrictions the system could handle but 1s not necessarily
limited to.

US 10,083,187 B2

3

Scenario for In: Restriction 1s determined for anything
within the perimeter 520 defined as illustrated in FIG. 5.
This 1s a less than operation.

Scenario for Around or Near: Restriction 1s determined
for anything within the perimeter defined plus some extra
bufler defined. This bufler does not necessarily have to be
radial about the center. This bufler can be generated 1n the
same way as our initial location with an additional multi-
plier. The multiplier does not need to be constant 1t could be
derived from the natural language question.

population
Fp = BX(CX . .
T X populationdensity

Where “rb” 1s the radial border including an additional
bufler and B 1s the multiplier to expand the radius.

In the FIG. 6, the outer border 610 shows the additional
bufler calculated for a location mn an ‘around’ or ‘near’
restriction.

Scenario for Outside: Restriction 1s determined for any-
thing outside 620 the perimeter defined plus some extra
bufler defined. This bufller does not necessarily have to be
radial about the center.

Take for example, the following sample query:

Sample Question: “what are my sales around Ottawa™

What follows 1s an example of how this system could
work on this sample query:

Step 1: Recognmize geographical location

Step 2: Bind Columns to Data

Step 3: Determine border for region

3.a—Create a radius using equation 4 using the latitude/

longitude as the starting point

3.b—Create more precise shape by repeating step 3.a for

cach sub-region of the location

3.c—Close the shape to generate a completed border

Step 4: Determine the restriction type (around, near, 1n,
within, outside, etc) and generate bufler if required

Step 5: Calculate the corresponding filters based on
restriction to the selected columns determined 1n step 2.

Step 6: Show visualization to the user with the geographi-
cal spacial restriction applied.

Applying the above procedure to the sample query yields
the following;:

Step 1: Recognmize geographical location:

Ottawa, Canada

Step 2: Bind Columns to Data:

‘sales’—=*Sales’, ‘Ottawa’—‘Department Location’

Step 3: Determine border for region

3.a—Create a radius using equation 4 using the latitude/

longitude as the starting point

3.b—Create more precise shape by repeating step 3.a for

cach sub-region of the location

3.c—Close the shape to generate a completed border

Step 4: Determine the restriction type (around, near, 1n,
within, outside, etc) and generate bufler 11 required:Restric-
tion ‘Around’ detected

Step 5: Calculate the corresponding filters based on
restriction to the selected columns determined 1n step 2

Department Location—Restriction=Around Oftawa

Nepean, Montreal, Barrhaven, Ottawa, Gatineau

Step 6: Show visualization to the user with the geographi-
cal spacial restriction applied.

As shown 1 FIG. 2, a computer-implemented method
according to one aspect of the invention includes recogniz-
ing a geographic location (step 210), determining a starting

10

15

20

25

30

35

40

45

50

55

60

65

4

latitude and starting longitude for the geographic location
(step 220), determining a population for the geographic
location (step 230), and generating a border for the geo-
graphic location using the starting latitude, starting longi-
tude, and population (step 240.)

In one embodiment, the method can further including
determining a restriction type to be applied to the geographic
location. The restriction type can be one of the following
(but not limited to): a near type, an mnside type, an outside
type, and around type.

In one embodiment, the method can further include
receiving a user request for information about a geographic
location and displaying a visual representation of the geo-
graphic location with the generated border.

FIG. 3 1s a block diagram of a computing device 80 that
may be used to execute a bandwidth sharing program,
according to an 1illustrative example. Computing device 80
may be a server such as a web server or application server.
Computing device 80 may also be a virtual server that may
be run from or incorporate any number ol computing
devices. A computing device may operate as all or part of a
real or virtual server, and may be or incorporate a worksta-
tion, server, mainframe computer, notebook or laptop com-
puter, desktop computer, tablet, smartphone, feature phone,
or other programmable data processing apparatus of any
kind. Other implementations of a computing device 80 may
include a computer having capabilities or formats other than
or beyond those described herein.

In the 1llustrative example of FIG. 3, computing device 80
includes communications fabric 82, which provides com-
munications between processor unit 84, memory 86, persis-
tent data storage 88, communications unit 90, and nput/
output (I/O) unit 92. Communications fabric 82 may include
a dedicated system bus, a general system bus, multiple buses
arranged 1n hierarchical form, any other type of bus, bus
network, switch fabric, or other interconnection technology.
Communications fabric 82 supports transier of data, com-
mands, and other information between various subsystems
of computing device 80.

Processor unit 84 may be a programmable central pro-
cessing unit (CPU) configured for executing programmed
instructions stored 1 memory 86. In another illustrative
example, processor unit 84 may be implemented using one
or more heterogeneous processor systems 1n which a main
processor 1s present with secondary processors on a single
chip. In yet another illustrative example, processor umt 84
may be a symmetric multi-processor system containing,
multiple processors of the same type. Processor unit 84 may
be a reduced instruction set computing (RISC) micropro-
cessor such as a PowerPC® processor from IBM® Corpo-
ration, an x86 compatible processor such as a Pentium®
processor from Intel® Corporation, an Athlon® processor
from Advanced Micro Devices® Corporation, or any other
suitable processor. In various examples, processor unit 84
may include a multi-core processor, such as a dual core or
quad core processor, for example. Processor umit 84 may
include multiple processing chips on one die, and/or mul-
tiple dies on one package or substrate, for example. Proces-
sor unit 84 may also include one or more levels of integrated
cache memory, for example. In various examples, processor
unit 84 may comprise one or more CPUs distributed across
one or more locations.

Data storage 96 includes memory 86 and persistent data
storage 88, which are 1n communication with processor unit
84 through communications fabric 82. Memory 86 can
include a random access semiconductor memory (RAM) for
storing application data, 1.e., computer program data, for

US 10,083,187 B2

S

processing. While memory 86 1s depicted conceptually as a
single monolithic entity, in various examples, memory 86
may be arranged in a hierarchy of caches and in other
memory devices, 1n a single physical location, or distributed
across a plurality of physical systems in various forms.
While memory 86 1s depicted physically separated from
processor unit 84 and other elements of computing device
80, memory 86 may refer equivalently to any intermediate
or cache memory at any location throughout computing
device 80, including cache memory proximate to or inte-
grated with processor unit 84 or individual cores of proces-
sor unit 84.

Persistent data storage 88 may include one or more hard
disc drives, solid state drives, flash drives, rewritable optical
disc drives, magnetic tape drives, or any combination of
these or other data storage media. Persistent data storage 88
may store computer-executable istructions or computer-
readable program code for an operating system, application
files comprising program code, data structures or data files,
and any other type of data. These computer-executable
instructions may be loaded from persistent data storage 88
into memory 86 to be read and executed by processor unit
84 or other processors. Data storage 96 may also include any
other hardware elements capable of storing information,
such as, for example and without limitation, data, program
code 1n functional form, and/or other suitable information,
cither on a temporary basis and/or a permanent basis.

Persistent data storage 88 and memory 86 are examples of
physical, tangible, non-transitory computer-readable data
storage devices. Some examples may use such a non-
transitory medium. Data storage 96 may include any of
various forms of volatile memory that may require being
periodically electrically refreshed to maintain data in
memory, while those skilled 1n the art will recognize that this
also constitutes an example of a physical, tangible, non-
transitory computer-readable data storage device. Execut-
able instructions may be stored on a non-transitory medium
when program code 1s loaded, stored, relayed, buflered, or
cached on a non-transitory physical medium or device,
including 11 only for only a short duration or only m a
volatile memory format.

Processor unit 84 can also be suitably programmed to
read, load, and execute computer-executable instructions or
computer-readable program code for a semantic model
constructor 22, as described in greater detail above. This
program code may be stored on memory 86, persistent data
storage 88, or clsewhere 1 computing device 80. This
program code may also take the form of program code 104
stored on computer-readable medium 102 comprised 1n
computer program product 100, and may be transierred or
communicated, through any of a variety of local or remote
means, from computer program product 100 to computing,
device 80 to be enabled to be executed by processor unit 84,
as Turther explained below.

The operating system may provide functions such as
device interface management, memory management, and
multiple task management. The operating system can be a
Unix based operating system such as the AIX® operating
system from IBM® Corporation, a non-Unix based operat-
ing system such as the Windows® family of operating
systems from Microsolt® Corporation, a network operating
system such as JavaOS® from Oracle® Corporation, or any
other suitable operating system. Processor unit 84 can be
suitably programmed to read, load, and execute instructions
of the operating system.

Communications unit 90, 1n this example, provides for
communications with other computing or communications

10

15

20

25

30

35

40

45

50

55

60

65

6

systems or devices. Communications unit 90 may provide
communications through the use of physical and/or wireless
communications links. Communications unit 90 may
include a network interface card for interfacing with a LAN
16, an FEthernet adapter, a Token Ring adapter, a modem for
connecting to a transmission system such as a telephone line,
or any other type of communication interface. Communica-
tions unit 90 can be used for operationally connecting many
types of peripheral computing devices to computing device
80, such as printers, bus adapters, and other computers.
Communications unit 90 may be implemented as an expan-
sion card or be built into a motherboard, for example.

The input/output unit 92 can support devices suited for
input and output of data with other devices that may be
connected to computing device 80, such as keyboard, a
mouse or other pointer, a touchscreen interface, an intertace
for a printer or any other peripheral device, a removable
magnetic or optical disc drive (including CD-ROM, DVD-
ROM, or Blu-Ray), a universal serial bus (USB) receptacle,
or any other type of input and/or output device. Input/output
umit 92 may also include any type of interface for video
output 1n any type of video output protocol and any type of
monitor or other video display technology, in various
examples. It will be understood that some of these examples
may overlap with each other, or with example components
of communications unit 90 or data storage 96. Input/output
unmit 92 may also iclude appropriate device drivers for any
type of external device, or such device drnivers may reside
clsewhere on computing device 80 as appropniate.

Computing device 80 also includes a display adapter 94 1n
this 1llustrative example, which provides one or more con-
nections for one or more display devices, such as display
device 98, which may include any of a vaniety of types of
display devices. It will be understood that some of these
examples may overlap with example components of com-
munications unit 90 or mput/output unit 92. Input/output
unit 92 may also iclude appropriate device drivers for any
type of external device, or such device drivers may reside
clsewhere on computing device 80 as appropriate. Display
adapter 94 may include one or more video cards, one or
more graphics processing units (GPUs), one or more video-
capable connection ports, or any other type of data connector
capable of communicating video data, in various examples.
Display device 98 may be any kind of video display device,
such as a monitor, a television, or a projector, 1 various
examples.

Input/output unit 92 may include a drive, socket, or outlet
for receiving computer program product 100, which com-
prises a computer-readable medium 102 having computer
program code 104 stored thereon. For example, computer
program product 100 may be a CD-ROM, a DVD-ROM, a
Blu-Ray disc, a magnetic disc, a USB stick, a flash drive, or
an external hard disc drive, as illustrative examples, or any
other suitable data storage technology.

Computer-readable medium 102 may include any type of
optical, magnetic, or other physical medium that physically
encodes program code 104 as a binary series of difierent
physical states in each unit of memory that, when read by
computing device 80, induces a physical signal that 1s read
by processor 84 that corresponds to the physical states of the
basic data storage elements of storage medium 102, and that
induces corresponding changes in the physical state of
processor unit 84. That physical program code signal may be
modeled or conceptualized as computer-readable 1nstruc-
tions at any of various levels of abstraction, such as a
high-level programming language, assembly language, or
machine language, but ultimately constitutes a series of

US 10,083,187 B2

7

physical electrical and/or magnetic mteractions that physi-
cally induce a change 1n the physical state of processor unit
84, thereby physically causing or configuring processor unit
84 to generate physical outputs that correspond to the
computer-executable mstructions, 1n a way that causes com-
puting device 80 to physically assume new capabilities that
it did not have until 1ts physical state was changed by
loading the executable instructions comprised 1 program
code 104.

In some 1llustrative examples, program code 104 may be
downloaded over a network to data storage 96 from another
device or computer system for use within computing device
80. Program code 104 comprising computer-executable
instructions may be communicated or transierred to com-
puting device 80 from computer-readable medium 102
through a hard-line or wireless communications link to
communications unit 90 and/or through a connection to
input/output unit 92. Computer-readable medium 102 com-
prising program code 104 may be located at a separate or
remote location from computing device 80, and may be
located anywhere, including at any remote geographical
location anywhere 1n the world, and may relay program code
104 to computing device 80 over any type of one or more
communication links, such as the Internet and/or other
packet data networks. The program code 104 may be trans-
mitted over a wireless Internet connection, or over a shorter-
range direct wireless connection such as wireless LAN,
Bluetooth™, Wi-Fi™ or an infrared connection, for
example. Any other wireless or remote communication
protocol may also be used in other implementations.

The communications link and/or the connection may
include wired and/or wireless connections in various 1llus-
trative examples, and program code 104 may be transmitted
from a source computer-readable medium 102 over non-
tangible media, such as communications links or wireless
transmissions containing the program code 104. Program
code 104 may be more or less temporarily or durably stored
on any number of intermediate tangible, physical computer-
readable devices and media, such as any number of physical
builers, caches, main memory, or data storage components
of servers, gateways, network nodes, mobility management
entities, or other network assets, en route from 1ts original
source medium to computing device 80.

The present invention may be a system, a method, and/or
a computer program product. The computer program prod-
uct may include a computer readable storage medium (or
media) having computer readable program instructions
thereon for causing a processor to carry out aspects of the
present invention. The computer readable storage medium
can be a tangible device that can retain and store instructions
for use by an instruction execution device. The computer
readable storage medium may be, for example, but 1s not
limited to, an electronic storage device, a magnetic storage
device, an optical storage device, an electromagnetic storage
device, a semiconductor storage device, or any suitable
combination of the foregoing.

A non-exhaustive list of more specific examples of the
computer readable storage medium includes the following:
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), a static random access memory (SRAM), a por-
table compact disc read-only memory (CD-ROM), a digital
versatile disk (DVD), a memory stick, a floppy disk, a
mechanically encoded device such as punch-cards or raised
structures 1n a groove having instructions recorded thereon,
and any suitable combination of the foregoing.

10

15

20

25

30

35

40

45

50

55

60

65

8

A computer readable storage medium, as used herein, 1s
not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave-
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire. Computer readable program instructions
described herein can be downloaded to respective comput-
ing/processing devices from a computer readable storage
medium or to an external computer or external storage
device via a network, for example, the Internet, a local area
network, a wide area network and/or a wireless network. The
network may comprise copper transmission cables, optical
transmission fibers, wireless transmission, routers, firewalls,
switches, gateway computers and/or edge servers. A network
adapter card or network interface in each computing/pro-
cessing device receives computer readable program instruc-
tions from the network and forwards the computer readable
program 1nstructions for storage in a computer readable
storage medium within the respective computing/processing
device.

Computer readable program instructions for carrying out
operations of the present imvention may be assembler
instructions, instruction-set-architecture (ISA) instructions,
machine 1nstructions, machine dependent instructions,
microcode, firmware structions, state-setting data, or
either source code or object code written 1n any combination
of one or more programming languages, including an object
oriented programming language such as Smalltalk, C++ or
the like, and conventional procedural programming lan-
guages, such as the “C” programming language or similar
programming languages. The computer readable program
istructions may execute entirely on the user’s computer,
partly on the user’s computer, as a stand-alone software
package, partly on the user’s computer and partly on a
remote computer or entirely on the remote computer or
server. In the latter scenario, the remote computer may be
connected to the user’s computer through any type of
network, including a local area network (LAN) or a wide
area network (WAN), or the connection may be made to an
external computer (for example, through the Internet using
an Internet Service Provider).

In some embodiments, electronic circuitry including, for
example, programmable logic circuitry, field-programmable
gate arrays (FPGA), or programmable logic arrays (PLA)
may execute the computer readable program instructions by
utilizing state information of the computer readable program
instructions to personalize the electronic circuitry, 1n order to
perform aspects of the present invention. Aspects of the
present mmvention are described herein with reference to
flowchart 1llustrations and/or block diagrams of methods,
apparatus (systems), and computer program products
according to embodiments of IBM CONFIDENTIAL D-2
the 1nvention.

It will be understood that each block of the flowchart
illustrations and/or block diagrams, and combinations of
blocks 1n the flowchart illustrations and/or block diagrams,
can be implemented by computer readable program instruc-
tions. These computer readable program 1nstructions may be
provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro-
cessing apparatus to produce a machine, such that the
instructions, which execute via the processor of the com-
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the flowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored

US 10,083,187 B2

9

in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function 1n a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function/act
specified 1n the flowchart and/or block diagram block or
blocks. The computer readable program instructions may
also be loaded onto a computer, other programmable data
processing apparatus, or other device to cause a series of
operational steps to be performed on the computer, other
programmable apparatus or other device to produce a com-
puter implemented process, such that the instructions which
execute on the computer, other programmable apparatus, or
other device implement the functions/acts specified in the
flowchart and/or block diagram block or blocks.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block 1n the flowchart
or block diagrams may represent a module, segment, or
portion ol instructions, which comprises one or more
executable instructions for implementing the specified logi-
cal function(s). In some alternative implementations, the
functions noted 1n the block may occur out of the order noted
in the figures. For example, two blocks shown 1n succession
may, 1n fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block dia-
grams and/or flowchart illustration, can be implemented by
special purpose hardware-based systems that perform the
specified functions or acts or carry out combinations of
special purpose hardware and computer instructions.

What 1s claimed 1s:

1. A computer-implemented method for generating geo-
graphic borders, the method comprising:

receiving a user request for imformation about a first

geographic location, wherein the user request includes
a location, and wherein the request includes a restric-
tion type;

recognizing, irom the location of the received user

request, the first geographic location;

determining a starting latitude and a starting longitude for

the first geographic location;

determining a {first population for the first geographic

location, wherein the first population includes a first
population value and a first population density value of
the first geographic location;

determining the restriction type includes a near type;

determining, based on the determined restriction type 1s a

near type and based on the first population value and
based on the first population density value, a radius of
the first geographic location;

identifying, based on the determined radius of the first

geographic location, a second geographic location,
wherein the second geographic location 1s separate and
distinct from the first geographic location, and wherein
the second geographic location includes a second lati-
tude and a second longitude;

determining, a second population for the second geo-

graphic location, wheremn the second population
includes a second population value and a second popu-
lation density value of the second geographic location;
and

5

10

15

20

25

30

35

40

45

50

55

60

65

10

generating a border for the first geographic location based
on the starting latitude, starting longitude, first popu-
lation, second latitude, second longitude, and second
population.

2. The method of claim 1, further comprising:

displaying a visual representation of the first geographic

location with the generated border.

3. The method of claim 1, wherein:

generating a border includes calculating one or more

sub-regions.

4. A computer program product for processing natural
language queries for geographic data sets, the computer
program product comprising a computer-readable storage
medium having program code embodied therewith, the
program code executable by a computing device to:

recerve a first natural language query, the first natural

language query directed towards a first geographic
location;

parse the received first natural language query with a

natural language processing engine;

detect, based on the parsing, the first geographic location

in the first natural language query;
retrieve, based on the detected first geographic location, a
population value and a population density value;

determine, based on the retrieved population value and
based on the retrieved population density value, a
radius around the first geographic location;

draw, based on the determined radius, a border of the first

geographic location;

detect, based on the parsing, a geographic restriction of

the first geographic location 1n the first natural language
query, wherein the geographic restriction 1s outside the
first geographic location;
retrieve, based on the detected geographic restriction and
based on the drawn border, a second population value
and a second population density value, wherein the
retrieved second population value and the retrieved
second population density value are of a second geo-
graphic location within the drawn border;
determine, based on the retrieved second population value
and based on the retrieved population density value, a
second radius around the second geographic location;

redraw, based on the determined second radius, the border
of first geographic location, wherein the redrawn bor-
der 1includes both the first geographic location and the
second geographic location;

detect, based on the parsing, a topic value in the first

natural language query; and

generate, based on the detected topic value and based on

the redrawn border, a response to the first natural
language query.

5. The computer program product of claim 4, wherein the
first geographic location 1s a first city and wherein the
second geographic location 1s a second city, and wherein the
first city 1s separated from the second city.

6. The computer program product of claim 5, wherein the
first geographic location 1s a first latitude and longitude and
wherein the second geographic location 1s a second latitude
and longitude.

7. A system for processing natural language queries for
geographic data sets, the system comprising:

a memory, the memory including computer-readable pro-

gram 1nstructions; and

a processor, the processor communicatively coupled to

the memory, the processor 1n response to reading the
program 1instructions configured to:

US 10,083,187 B2

11

receive a first natural language query, the first natural
language query directed towards a first city;

parse the received first natural language query with a
natural language processing engine;

detect, based on the parsing, the first city in the first
natural language query;

retrieve, based on the detected first city, a population
value and a population density value;

determine, based on the retrieved population value and
based on the retrieved population density value, a
radius around the first city;

draw, based on the determined radius, a border of the
first city;

detect, based on the parsing, a geographic restriction of
the first city in the first natural language query;

retrieve, based on the detected geographic restriction
and based on the drawn border, a second population
value and a second population density value,
wherein the retrieved second population value and
the retrieved second population density value are of

10

15

12

a second city adjacent to the drawn border, and
wherein the second city 1s distinct and separate from
the first city;

determine, based on the retrieved second population
value and based on the retrieved population density
value, a second radius around the second city;

redraw, based on the determined second radius, the
border of first city, wherein the redrawn border
includes both the first city and the second city;

detect, based on the parsing, a topic value 1n the first
natural language query; and

generate, based on the detected topic value and based

on the redrawn border, a response to the first natural
language query.

8. The computer program product of claim 7, wherein the
geographic restriction 1s outside of the first city.

9. The computer program product of claim 7, wherein the
geographic restriction 1s near the first city.

x x * x x

	Front Page
	Drawings
	Specification
	Claims

